3 resultados para autonomous parvovirus, dendritic cell, toll-like receptors, tumor immunology

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Fas system, comprising the Fas receptor (Fas/Apo-1/CD95) and its ligand, Fas ligand (FasL), is a central mediator of programmed cell death in various physiological and pathological processes. FasL exists as transmembrane and soluble forms and induces apoptosis on crosslinking with Fas receptor. Recent evidence indicated that tumor cells exploit this system for their immunologic escape that includes the loss of Fas and the gain of FasL expression. In the present study, nine mouse tumor cell lines of diverse origin were examined immunocytochemically for the expression of Fas and FasL. Nine of nine cell lines expressed FasL, and five of nine cell lines expressed Fas. FasL expression in these tumor cell lines was demonstrated to be functional by its induction of apoptosis in Fas-sensitive target cells in coculture experiments. These results suggest that FasL may be a prevalent mediator of immune privilege in mouse malignancies, and support the recently proposed "counterattack model" for local elimination of tumor-reactive immune cells by tumor cell-derived FasL.^ Culture supernatant of four cell lines expressing FasL showed cytotoxic effect on Fas-sensitive target cells, indicating the possibility of secreted FasL in the medium. The Fas-expressing cell lines were sensitized to anti-Fas antibody cytotoxicity following treatment with IL-2 and IFN-$\gamma$, suggesting cytokine stimulation as an effective target for future immunotherapeutic strategies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alcohol is known to induce inflammation in the presence of the human immunodeficiency virus (HIV). In our previous studies, we revealed that alcohol induces cannabinoid receptors which play a role in the regulation of inflammatory cytokine production in monocyte-derived dendritic cells (MDDC). However, the ability of alcohol to alter MDDC function during HIV infection has not been clearly elucidated yet. To study the potential impact of alcohol on HIV-infected MDDC (confirmed by p24 ELISA), monocytes were isolated from commercially available buffy coats and cultured for 7 days with GM-CSF and IL-4. MDDC were infected with HIV- 1Ba-L and treated with different concentrations of alcohol (0.1% band 0.2%) for 4-7 days. MDDC phenotype, endocytosis, cytokine production, and ability to transmit HIV to T cells were analyzed. Uninfected CD4+ T cells were co-cultured for 7 days with either infected/treated MDDC or the supernatants from infected/treated MDDC. Inflammatory cytokine arrays were performed using supernatants from HIV-infected MDDC treated with alcohol. Results showed that HIV positive MDDC treated with alcohol had higher levels of infection compared to untreated HIV positive controls. CD4+ T cells exposed to HIV-infected MDDC acquired 100-fold higher levels of p24 compared to CD4+ T cells exposed to only supernatants. CD4+ T cells exposed to HIV-infected and alcohol-treated MDDC had higher levels of infection compared to controls. Cytokine array data show dysregulation of cytokine production by alcohol. In addition, MDDC phenotype and endocytic capacity were altered in the alcohol treated MDDC. Our results indicate a crucial role of MDDC in HIV transmission to T cells and provide insights into the inflammatory role alcohol exerts on dendritic cell function in the context of HIV infection. Supported by the National Institute on Alcohol Abuse and Alcoholism award R00AA021264, the National Institute on Drug Abuse award R01DA034547, and the Institute on NeuroImmune Pharmacology at FIU.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cocaine and other drugs of abuse increase HIV-induced immunopathogenesis; and neurobiological mechanisms of cocaine addiction implicate a key role for microRNAs (miRNAs), single-stranded non-coding RNAs that regulate gene expression and defend against viruses. In fact, HIV defends against miRNAs by actively suppressing the expression of polycistronic miRNA cluster miRNA-17/92, which encodes miRNAs including miR-20a. IFN-g production by natural killer cells is regulated by miR-155 and this miRNA is also critical to dendritic cell (DC) maturation. However, the impact of cocaine on miR-155 expression and subsequent HIV replication is unknown. We examined the impact of cocaine on two miRNAs, miR-20a and miR-155, which are integral to HIV replication, and immune activation. Using miRNA isolation and analysis, RNA interference, quantitative real time PCR, and reporter assays we explored the effects of cocaine on miR-155 and miR-20 in the context of HIV infection. Here we demonstrate using monocyte-derived dendritic cells (MDCCs) that cocaine significantly inhibited miR-155 and miR-20a expression in a dose dependent manner. Cocaine and HIV synergized to lower miR-155 and miR-20a in MDDCs by 90%. Cocaine treatment elevated LTR-mediated transcription and PU.1 levels in MDCCs. But in context of HIV infection, PU.1 was reduced in MDDCs regardless of cocaine presence. Cocaine increased DC-SIGN and and decreased CD83 expression in MDDC, respectively. Overall, we show that cocaine inhibited miR-155 and prevented maturation of MDDCs; potentially, resulting in increased susceptibility to HIV-1. Our findings could lead to the development of novel miRNA-based therapeutic strategies targeting HIV infected cocaine abusers.